Abstract
We adapted the percentage intensity approach to monitor accelerations and decelerations allowing players' individualisation. Forty-two players were monitored during four microcycles via global navigation satellite system devices. Raw velocity and time data were collected to calculate acceleration and deceleration magnitudes according to specific starting speed intervals, and the efforts intensities were established as very low (<25% of the maximal effort), low (25-50%), moderate (50-75%) and high (>75%). Linear regressions and Pearson correlation (r) analysed the relationship between maximal efforts and starting speeds; additionally, mean paired differences compared efforts magnitudes between subsequent starting speed intervals. Most very low intensity accelerations (86%) and decelerations (79%) started from <5 km.h-1. Correlation between maximal efforts and starting speeds were r = -0.97 (p < .001) for acceleration, and r = -0.94 (p < .01) for deceleration. Maximal acceleration decreased as starting speed increases (very large effect sizes), but deceleration is less starting speed dependent (unclear to large effect sizes). This adaptation allows practitioners to individualise accelerations and decelerations classification during real-life scenarios, leading to a more precise training prescription. The very low intensity interval could be excluded to consider only relevant efforts. Maximal acceleration should be collected for each starting speed interval because accelerations are starting speed dependents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.