Abstract

Abstract Although organosolv processes using high-boiling solvents have been investigated in recent decades for developing novel industrial processes, there are potential benefits of using high-boiling point solvents for traditional sulphate-based cooking processes, both from an industrial perspective and from a laboratory perspective. Using high-boiling solvents, experiments can be done under atmospheric conditions, thus making it easier to continually monitor laboratory experiments and extracting aliquots at desired intervals. Using such a system, alkaline consumption was monitored during impregnation of spruce chips in glycerol media using chemical charges of 1 M NaOH and 0.1 M NaHS, i. e., kraft pulping conditions, and compared to a similar investigation of alkaline consumption in water media using steel autoclaves. The resulting data was fitted to a first order kinetic model, with an apparent activation energy of 22 kJ mol−1 in glycerol media. Finally, a “normal quality pulp” of kappa number 28 and a viscosity of 1113 ml g−1 was successful produced using a cooking process with an impregnation step at 140 °C for 3 h and a cooking step at 160 °C for 4 h. A nuclear magnetic resonance study on the dissolved lignin produced for said experiment showed characteristics typical of other kraft lignins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.