Abstract

Geno2pheno[coreceptor] is a widely used tool for the prediction of coreceptor usage (viral tropism) of HIV-1 samples. For HIV-1 CRF01_AE, a significant overcalling of X4-tropism is observed when using the standard settings of Geno2pheno[coreceptor]. The aim of this study was to provide the experimental backing for adaptations to the geno2pheno[coreceptor] algorithm in order to improve coreceptor usage predictions of clinical HIV-1 CRF01_AE isolates STUDY DESIGN: V3-sequences of 20 clinical HIV-1 subtype CRF01_AE samples were sequenced and analyzed by geno2pheno[coreceptor]. In parallel, coreceptor usage was determined for these samples by replicative phenotyping in human cells in the presence of specific X4- or R5-inhibitors. The sole introduction of the CRF01_AE V3 region into a full-length otherwise subtype B provirus failed to produce replication-competent viral progeny. A successive genome-replacement strategy revealed that also CRF01_AE derived gag and pol sequences are necessary to generate HIV genomes with sufficient replication competence. Subsequent phenotypic analysis confirmed overcalling of X4-tropism for CRF01_AE viruses using the current version and the standard cut-off at 10% false positive rate (FPR) of geno2pheno[coreceptor]. Lowering the FPR cut-off to 2.5% reduced the X4-overcalling in our sample collection, while still allowing a safe administration of Maraviroc (MCV). This study demonstrates the successful adjustment of geno2pheno[coreceptor] rules for subtype CRF01_AE. It also supports the unique strength of combining complementing methods, namely phenotyping and genotyping, for validating new bioinformatics tools prior to application in diagnostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call