Abstract

Space plays an ever increasing role in cell biological modeling and simulation. This ranges from compartmental dynamics, via mesh-based approaches, to individuals moving in continuous space. An attributed, multi-level, rule-based language, ML-Space, is presented that allows to integrate these different types of spatial dynamics within one model. The associated simulator combines Gillespie's method, the Next Subvolume method, and Brownian dynamics. This allows the simulation of reaction diffusion systems as well as taking excluded volume effects into account. A small example illuminates the potential of the approach in dealing with complex spatial dynamics like those involved in studying the dynamics of lipid rafts and their role in receptor co-localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.