Abstract
Reinforcement learning (RL) demonstrates promise for developing effective treatment policies in critical care settings. However, existing RL methods often require large and comprehensive patient data sets and do not readily lend themselves to settings in which certain patient subpopulations are severely underrepresented. In this study, we develop a new method, noisy Bayesian policy updates (NBPU), for selecting high-performing reinforcement learning–based treatment policies for underrepresented patient subpopulations using limited observations. Our method uses variational inference to learn a probability distribution over treatment policies based on a reference patient subpopulation for which sufficient data are available. It then exploits limited data from an underrepresented patient subpopulation to update this probability distribution and adapts its recommendations to this subpopulation. We demonstrate our method’s utility on a data set of ICU patients receiving intravenous blood anticoagulant medication. Our results show that NBPU outperforms state-of-the-art methods in terms of both selecting effective treatment policies for patients with nontypical clinical characteristics and predicting the corresponding policies’ performance for these patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.