Abstract

Current speech recognition systems with fixed vocabularies have difficulties recognizing Out-of-Vocabulary words (OOVs) such as proper nouns and new words. This leads to misunderstandings or even failures in dialog systems. Ensuring effective speech recognition is crucial for the proper functioning of robot assistants. Non-native accents, new vocabulary, and aging voices can cause malfunctions in a speech recognition system. If this task is not executed correctly, the assistant robot will inevitably produce false or random responses. In this paper, we used a statistical approach based on distance algorithms to improve OOV correction. We developed a post-processing algorithm to be combined with a speech recognition model. In this sense, we compared two distance algorithms: Damerau–Levenshtein and Levenshtein distance. We validated the performance of the two distance algorithms in conjunction with five off-the-shelf speech recognition models. Damerau–Levenshtein, as compared to the Levenshtein distance algorithm, succeeded in minimizing the Word Error Rate (WER) when using the MoroccanFrench test set with five speech recognition systems, namely VOSK API, Google API, Wav2vec2.0, SpeechBrain, and Quartznet pre-trained models. Our post-processing method works regardless of the architecture of the speech recognizer, and its results on our MoroccanFrench test set outperformed the five chosen off-the-shelf speech recognizer systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call