Abstract
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing tasks. In this paper, we present results using fine-tuned GPT, GPT-2, and their combination for automatic speech recognition (ASR). Unlike unidirectional LM GPT and GPT-2, BERT is bidirectional whose direct product of the output probabilities is no longer a valid language prior probability. A conversion method is proposed to compute the correct language prior probability based on bidirectional LM outputs in a mathematically exact way. Experimental results on the widely used AMI and Switchboard ASR tasks showed that the combination of the fine-tuned GPT and GPT-2 outperformed the combination of three neural LMs with different architectures trained from scratch on the in-domain text by up to a 12% relative word error rate reduction (WERR). Furthermore, on the AMI corpus, the proposed conversion for language prior probabilities enables BERT to obtain an extra 3% relative WERR, and the combination of BERT, GPT and GPT-2 results in further improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.