Abstract

We analyze power dissipation and energy consumption during the execution of high-performance dense linear algebra kernels on multi-core processors. On top of this analysis, we propose and evaluate several strategies to adapt concurrency throttling and the voltage---frequency setting in order to obtain an energy-efficient execution of LAPACK's routine dsytrd. Our strategies take into account the differences between the memory-bound and CPU-bound kernels that govern this routine, and whether problem data fits into the processor's last level cache.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.