Abstract
The very weak solution of the Poisson equation with $L^2$ boundary data is defined by the method of transposition. The finite element solution with regularized boundary data converges in the $L^2(\Omega)$-norm with order 1/2 in convex domains but has a reduced convergence order in nonconvex domains although the solution remains to be contained in $H^{1/2}(\Omega)$. The reason is a singularity in the dual problem. In this paper we propose and analyze, as a remedy, both a standard finite element method with mesh grading and a dual variant of the singular complement method. The error order 1/2 is retained in both cases, also with nonconvex domains. Numerical experiments confirm the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.