Abstract

In this paper we study and define an adapted fuzzy integral, based on the Sugeno integral. Moreover, we present a numerical integration formula which approximates the value of the adapted fuzzy integral. Thus, we prove that the Riemann integral and the adapted fuzzy integral are equivalent for power functions. Next, we apply the formula proposed in the numerical integration, required in the finite element method, to obtain a numerical solution of a boundary value problem for the one-dimensional Poisson equation. Finally, we observed better results of the approximate solution obtained in the example with the use of our formula when compared with the simple trapezoidal rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.