Abstract

Little is known about the biomechanical properties of human ligamentum teres. To more fully understand the ligamentum teres, its dimensions and mechanical properties were measured in 22 cases of acute fracture of the femoral neck and 21 cases of ischemic necrosis of the femoral head. The specimens first were preconditioned and then loaded to failure with a testing machine at a fast strain rate of 100% s(-1). The ischemic necrosis group had a significantly larger volume (3.09 +/- 1.81 ml versus 1.30 +/- 0.62 ml) and cross section area (65.3 +/- 59.1 mm2 versus 30.6 +/- 27.2 mm2) than did the acute fracture group. The former also had a significantly greater ultimate load (234 +/- 168 N versus 130 +/- 111 N) and strain energy to failure (1.22 +/- 1.04 J versus 0.41 +/- 0.39 J), but a significantly smaller linear modulus (4.72 +/- 3.31 MPa versus 8.69 +/- 7.97 MPa) than did the latter. Histologic studies showed differences in the amount of organized collagen and components of subsynovial tissue between the 2 groups. Mechanical and morphologic adaptations of the ligamentum teres in a group of ischemic femoral heads are described, and a possible biomechanical role is suggested for the ligamentum teres in the hip joint in conjunction with the ischemic necrosis of the femoral head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.