Abstract

The effect of endurance training on glutathione (GSH) status and antioxidant enzyme system was investigated in skeletal muscle, heart, and liver of female Sprague-Dawley rats pair fed an isocaloric diet. Ten weeks of treadmill training (25 m/min, 10% grade for 2 h/day, 5 days/wk) increased citrate synthase activity in the deep vastus lateralis (DVL) and soleus muscles by 79 and 39%, respectively (P < 0.01), but not in the heart or liver. In DVL, GSH content was increased 33% (P < 0.05) with training, accompanied by a 64% (P < 0.05) increase in glutamate content but no change in cysteine. Trained rats showed a 62 and 27% higher GSH peroxidase (GPX) and superoxide dismutase (SOD) activity, respectively (P < 0.05), in DVL compared with control rats. In contrast, GSH content and glutathione reductase (GR) activity in soleus declined with training (P < 0.05), whereas activities of GPX and SOD remained unchanged. Training did not alter GSH status in the liver or plasma but significantly decreased the GSH-to glutathione disulfide ratio in the heart. In addition, GR activity in the liver and GSH sulfur-transferase activity in the heart and DVL were significantly lower in the trained vs control rats DVL muscle had threefold higher gamma-glutamyl transpeptidase activity compared with other tissues; however no significant alteration was observed in the activity of gamma-glutamyltranspeptidase or gamma-glutamylcysteine synthetase in the liver, heart, or skeletal muscle. These data indicate that endurance training can cause tissue- and muscle fiber-specific adaptation of antioxidant systems and that GSH homeostasis in extrahepatic tissues may be determined by utilization and uptake of GSH via the gamma-glutamyl cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call