Abstract

The adaptation mechanisms of microbial communities to natural perturbations remain unexplored, particularly in extreme environments. The extremophilic communities of halite (NaCl) nodules from the hyper-arid core of the Atacama Desert are self-sustained and represent a unique opportunity to study functional adaptations and community dynamics with changing environmental conditions. We transplanted halite nodules to different sites in the desert and investigated how their taxonomic, cellular, and biochemical changes correlated with water availability, using environmental data modeling and metagenomic analyses. Salt-in strategists, mainly represented by haloarchaea, significantly increased in relative abundance at sites characterized by extreme dryness, multiple wet/dry cycles, and colder conditions. The functional analysis of metagenome-assembled genomes (MAGs) revealed site-specific enrichments in archaeal MAGs encoding for the uptake of various compatible solutes and for glycerol utilization. These findings suggest that opportunistic salt-in strategists took over the halite communities at the driest sites. They most likely benefited from compounds newly released in the environment by the death of microorganisms least adapted to the new conditions. The observed changes were consistent with the need to maximize cellular bioenergetics when confronted with lower water availability and higher salinity, providing valuable information on microbial community adaptations and resilience to climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.