Abstract

Moulting, especially in ‘hemimetabolous’ insects that emerge upside down, is a crucial moment in their live. Losing their attachment during this situation can be fatal for survival. We here studied the emergence of dragonfly adults, describe structures involved in larval attachment to the substrate, and biomechanically test the pull-off forces of exuviae to natural substrates. Confocal laser scanning microscopy and scanning electron microscopy were used to describe both morphology and material composition of the leg cuticle of Anax imperator larvae. The results show that the combination of morphological and behavioral adaptations provides reliable anchorage of exuviae to the substrates. We determined a safety factor of 14, and demonstrated that this staggered safety system experiencing several unlocking and relocking events withstand multiple disturbances before the entire exuvia is completely detaches. This furthers our understanding of interlocking and anchorage of insects in general and may allow for future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call