Abstract

While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout (SERT-/-) rat and the involvement of compensatory changes in 5-HT1A receptor function are the objectives of the study. The SERT-/- rat was tested for cocaine-induced locomotor activity, cocaine-induced conditioned place preference, and intravenous cocaine self-administration. In addition, the function and expression of 5-HT1A receptors was assessed using telemetry and autoradiography, respectively, and the effect of 5-HT1A receptor ligands on cocaine's psychomotor effects were studied. Cocaine-induced hyperactivity and conditioned place preference, as well as intravenous cocaine self-administration were enhanced in SERT-/- rats. Furthermore, SERT-/- rats displayed a reduced hypothermic response to the 5-HT1A receptor agonist 8-OHDPAT. S-15535, a selective somatodendritic 5-HT1A receptor agonist, reduced stress-induced hyperthermia (SIH) in wild-type controls (SERT+/+), while it increased SIH in SERT-/- rats. As 5-HT1A receptor binding was reduced in selective brain regions, these thermal responses may be indicative for desensitized 5-HT1A receptors. We further found that both 8-OHDPAT and S-15535 pretreatment increased low-dose cocaine-induced locomotor activity in SERT-/- rats, but not SERT+/+ rats. At a high cocaine dose, only SERT+/+ animals responded to 8-OHDPAT and S-15535. These data indicate that SERT-/- -associated 5-HT1A receptor adaptations facilitate low-dose cocaine effects and attenuate high-dose cocaine effects in cocaine supersensitive animals. The role of postsynaptic and somatodendritic 5-HT1A receptors is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call