Abstract

This study aimed at evaluating the phytoplankton adaptive strategies of phytoplankton in a shallow urban eutrophic tropical reservoir, Garcas Reservoir, over temporal and vertical scales. Samples were taken monthly for eight consecutive years (1997–2004) at a fixed set of depths in the water column. At the beginning, the reservoir was eutrophic with 20% of its surface covered by water hyacinth Eichhornia crassipes (phase I). Then, in phase II, water hyacinth grew to cover up to 40–70% of the surface. In phase III it was mechanically removed. After macrophyte removal the limnology changed, drastically. This removal modified nutrient dynamics, drastically reduced water transparency, and increased both primary production and phytoplankton biomass, the latter impeding light penetration. Phytoplankton life strategies during water hyacinth dominance (phase II) responded promptly to this environmental disturbance in conditions of low dissolved oxygen (DO) and soluble reactive phosphorus (SRP) and high free CO2 values. After macrophyte removal, a permanent cyanobacterial monoculture was established. Phase I was dominated basically by Sphaerocavum brasiliense, mainly during the stratified months, represented by non-flagellate colonies, the M functional group, S-strategists, and greater biomass of species with high maximal axial linear dimension (MLD) and cell volumes. Phase II was dominated by Cryptomonas curvata, C. erosa, C. marssonii, Trachelomonas sculpta, T. volvocinopsis, T. kelloggii, T. hispida, Peridinium spp., Aphanocapsa spp., and Aphanothece spp., and was represented by unicellular flagellate species, Y, W2, K, LO functional groups, and C-strategists, greater biomass of species with intermediate MLD and cell volumes. Phase III was dominated by Microcystis aeruginosa, M. panniformis, Cylindrospermopsis raciborskii, Planktothrix agardhii, and Aphanizomenon gracile, represented by non-flagellate colonies, M, S, H1, S functional groups, and S and R-strategists, greater biomass of species with high MLD and cell volumes (>50 μm and >104 μm3, respectively).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call