Abstract

Over the years, many CATs (chromatic adaptation transforms) have been developed, such as CMCCAT97, CAT02 and CAT16, to predict the corresponding colors under different illuminants. These CATs were derived from uniform simple stimuli surrounded by a uniform background with a single illuminant. Although some mixed adaptation models have been proposed in literature to predict the adaptation under more than one illuminant, these models are typically limited to a certain scene and exclude the impact of spatial complexity. To investigate chromatic adaptation under more complex conditions, an achromatic matching experiment was conducted with (simultaneously) spatially dichromatic illumination for three illumination color pairs and various spatial configurations. Spatial configuration was found to have an impact on both the degree of adaptation and the equivalent illuminant chromaticity, which is the chromaticity of a single uniform adapting illumination that results in the same corresponding colors as for the dichromatic lighting condition. A preliminary CAT model is proposed that considers the spatial and colorimetric complexity of the illumination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call