Abstract

The direction that we see another person walking provides us with an important cue to their intentions, but little is known about how the brain encodes walking direction across a neuronal population. The current study used an adaptation technique to investigate the sensory coding of perceived walking direction. We measured perceived walking direction of point-light stimuli before and after adaptation, and found that adaptation to a specific walking direction resulted in repulsive perceptual aftereffects. The magnitude of these aftereffects was tuned to the walking direction of the adaptor relative to the test, with local repulsion of perceived walking direction for test stimuli oriented on either side of the adapted walking direction. The specific tuning profiles that we observed are well explained by a population-coding model, in which perceived walking direction is coded in terms of the relative activity across a bank of sensory channels with peak tuning distributed across the full 360° range of walking directions. Further experiments showed specificity in how horizontal (azimuth) walking direction is coded when moving away from the observer compared to when moving toward the observer. Moreover, there was clear specificity in these perceptual aftereffects for walking direction compared to a nonbiological form of 3D motion (a rotating sphere). These results indicate the existence of neural mechanisms in the human visual system tuned to specific walking directions, provide insight into the number of sensory channels and how their responses are combined to encode walking direction, and demonstrate the specificity of adaptation to biological motion. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.