Abstract

The production of type I interferon (IFN) is an early host response to different infectious agents leading to the induction of hundreds of IFN-stimulated genes (ISGs). The roles of many ISGs in host defense are unknown, but their expression results in the induction of an "antiviral state" that inhibits the replication of many viruses. Here we show that prototype primate lentiviruses human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus of macaques (SIV(MAC) and SIV(MNE)) can replicate in lymphocytes from their usual hosts (humans and macaques, respectively), even when an antiviral state is induced by IFN-α treatment. In contrast, HIV-1 and SIV(MAC)/SIV(MNE) replication was hypersensitive to IFN-α in lymphocytes from unnatural hosts, indicating that the antiviral state can effectively curtail the replication of primate lentiviruses in hosts to which they are not adapted. Most of the members of a panel of naturally occurring HIV-1 and HIV-2 strains behaved like prototype strains and were comparatively insensitive to IFN-α in human lymphocytes. Using chimeric viruses engineered to overcome restriction factors whose antiretroviral specificities vary in a species-dependent manner, we demonstrate that differential HIV-1 and SIV(MAC) sensitivities to IFN-α in lymphocytes from humans and macaques could not be ascribed to TRIM5, APOBEC3, tetherin, or SAMHD1. Single-cycle infection experiments indicated that at least part of this species-specific, IFN-α-induced restriction of primate lentivirus replication occurs early in the retroviral life cycle. Overall, these studies indicate the existence of undiscovered, IFN-α-inducible antiretroviral factors whose spectrum of activity varies in a species-dependent manner and to which at least some HIV/SIV strains have become adapted in their usual hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.