Abstract
Molecules having different accessible shape states, which can be addressed in an effector-controlled manner, may be termed morphological switches. A dynamic covalent system can undergo adaptation to each state of a two-state morphological switch by generation of an optimal constitution through component selection. We have studied such a component selection in the dynamic covalent constituents generated by metal cation-induced shape switching of a core component between two states of W and U shape, characterized by both different geometries and different coordination features. The system performs shape-dependent self-sorting of metal ions and components. The origin of the selectivity was investigated through competition experiments, in solution and by analysis of solid state structures, which reveal the role of the molecular shape in the formation of a particular self-assembled architecture. The coordination features of each state as well as phase change also play an important role, in addition to the shape plasticity, in steering the covalent dynamic system toward the formation of a given entity by the selection of the most appropriate components. Different examples are described which show that the morphological switching of one component of a given self-assembled entity can lead to the exchange of the complementary one, which is no longer the best partner, for a new partner, able to form a more stable new assembly. Thus, the constitutional evolution of these dynamic systems is steered by the shape of a given state via both its geometry and its coordination features toward metal ions, leading to incorporation/decorporation of the most appropriate components. The controlled interconversion of the shape states of the morphological switches, induced by addition/removal of metal ions, results in a constitutional adaptation behavior through inversion of the selection preferences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.