Abstract

BackgroundUnderstanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations.ResultsWe compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition.ConclusionsOur findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii’s adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.

Highlights

  • Understanding how species adapt to new niches is a central issue in evolutionary ecology

  • Larval nutritional performance matches each species use of fruit decay stage We started by measuring protein and sugar content of strawberries, one of the preferred oviposition substrates of D. suzukii [33], over the course of 14 days to verify our assumption that P:C ratio is lower in ripe fruits and increases with the rotting process (Additional file 1: Figure S1)

  • D. suzukii prefers to lay its eggs on ripe fruits while D. biarmipes colonizes fruits at later stages of decay

Read more

Summary

Introduction

Understanding how species adapt to new niches is a central issue in evolutionary ecology. The decom‐ position of plant material is facilitated by yeast colonization and proliferation These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. A comprehensive understanding of how animals adapt to new foods requires combining analyses of how animals perform on different diets with analyses of the range of physical and non-nutritional properties animals can exploit [2]. Comparing the impact of diet composition on life history traits and food preferences between closely-related species with divergent nutritional niches can further our understanding of adaption to new nutritional resources and new habitats

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call