Abstract

Perception depends on the relative activity of populations of sensory neurons with a range of tunings and response gains. Each neuron's tuning and gain are malleable and can be modified by sustained exposure to an adapting stimulus. Here, we used a combination of human psychophysical testing and models of neuronal population decoding to assess how rapid adaptation to moving stimuli might change neuronal tuning and thereby modulate direction perception. Using a novel motion stimulus in which the direction changed every 10 ms, we demonstrated that 1,500 ms of adaptation to a distribution of directions was capable of modifying human psychophysical direction discrimination performance. Consistent with previous reports, we found perceptual repulsion following adaptation to a single direction. Notably, compared with a uniform adaptation condition in which all motion directions were equiprobable, discrimination was impaired after adaptation to a stimulus comprising only directions ± 30-60° from the discrimination boundary and enhanced after adaptation to the complementary range of directions. Thus, stimulus distributions can be selectively chosen to either impair or improve discrimination performance through adaptation. A neuronal population decoding model incorporating adaptation-induced repulsive shifts in direction tuning curves can account for most aspects of our psychophysical data; however, changes in neuronal gain are sufficient to account for all aspects of our psychophysical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.