Abstract

The control of a cursor on a computer monitor offers a simple means of exploring the limits of the plasticity of human visuomotor coordination. The authors explored the boundary conditions for adaptation to nonlinear visuomotor amplitude transformations. The authors hypothesized that only with terminal visual feedback during practice, but not with continuous visual feedback, humans might develop an internal model of the nonlinear visuomotor amplitude transformation. Thus, 2 groups were engaged in a sensorimotor adaptation task receiving either continuous or terminal visual feedback during the practice phase. In contrast to expectations, adaptive shifts and aftereffects observed in visual open-loop tests were linearly related to target amplitudes for both groups. Although the 2 feedback groups did not differ with respect to adaptive shifts and aftereffects, terminal visual feedback resulted in stable visual open-loop performance for an extended period, whereas movement errors increased after continuous visual feedback during practice. The benefit of continuous visual feedback, on the other hand, was faster closed-loop performance, indicating an optimization of visual closed-loop control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call