Abstract

Binocular visual feedback is used to continually calibrate binocular eye alignment so that the retinal images of the two eyes remain in correspondence. Past experiments have shown that vertical eye alignment (measured as vertical phoria) can be altered by training to disparities that vary as a function of orbital eye position. The present experiments demonstrate that vertical eye alignment can also be trained to differ with head position when eye position (with respect to the orbit) is held constant. Changes in head position were about either an earth-vertical or earth-horizontal axis to distinguish otolith-ocular related adaptation from cervical-ocular related adaptation. Changes in head position were implemented by either by rotating the whole body (WB) or by rotating the head with the body stationary (HO). Following training, adaptation of eye alignment was observed in all cases of rotation about an earth-horizontal axis and for HO pitch rotations about an earth-vertical axis. The results illustrate the ability of the oculomotor system to compensate for imbalances in otolith-ocular pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.