Abstract

BackgroundThe duration of ventricular repolarization (VR) and its spatial and temporal heterogeneity are central elements in arrhythmogenesis. We studied the adaptation of VR duration and dispersion and their relationship in healthy human subjects during atrial pacing.MethodsPatients 20‐50 years of age who were scheduled for ablation of supraventricular tachycardia without preexcitation but otherwise healthy were eligible. Vectorcardiography recordings with Frank leads were used for data collection. Incremental atrial pacing from a coronary sinus electrode was performed by decrements of 10ms/cycle from just above sinus rate, and then kept at a fixed heart rate (HR) just below the Wenckebach rate for ≥5min and then stopped. VR duration was measured as QT and VR dispersion as T area, T amplitude and ventricular gradient. The primary measure (T90 End) was the time to reach 90% change from baseline to the steady state value during and after pacing.ResultsA complete study protocol was accomplished in 9 individuals (6 women). VR duration displayed a monophasic adaptation during HR acceleration lasting on average 20s. The median (Q1‐Q3) T90 End for QT was 85s (51‐104), a delay by a factor >4. All dispersion measures displayed a tri‐phasic response pattern during HR acceleration and T90 End was 3‐5 times shorter than for VR duration.ConclusionsEven during close to “physiological” conditions, complex and differing response patterns in VR duration and dispersion measures followed changes in HR. Extended knowledge about these responses in disease conditions might assist in risk evaluation and finding therapeutic alternatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call