Abstract

Endurance training improves cardiac function and protects against heart disease. The rodent intensity-controlled running model replicates endurance exercise in humans and can be used to investigate molecular adaptations in the heart. Rats (n = 6, 280 +/- 3 g) performed exercise tests to measure their peak oxygen uptake (VO2peak) and training was prescribed at 70-75% VO2 peak for 30 min, 4 days/wk. Hearts were isolated 4 h after a final VO2peak test and left ventricle proteomes compared to weight-matched control animals (n = 6, 330 +/- 2 g) using differential analysis of 2-D gels. Proteins were identified by searching MS and MS/MS spectra against Swiss-Prot using MASCOT (www.matrixscience.com). Average VO2peak increased 23% (p = 0.008) over the 6-week regimen and 23 gel spots differed (p<0.05) between exercised and control hearts. Expression of myofibrillar proteins (e.g. alpha-myosin heavy chain and cardiac alpha-actin) and proteins associated with fatty acid metabolism (e.g. heart fatty acid binding protein, acetyl coenzyme A dehydrogenase and mitochondrial thioesterase-1) increased. In addition, this work discovered a novel increase in phosphorylation of heat shock protein 20 at serine 16. Previously this modification has been associated with improved cardiomyocyte contractility and protection against apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.