Abstract

The kinetics of oxide growth on 316 L stainless steel was measured after exposing samples, to a typical primary water environment at three temperatures (290℃, 320℃ and 360℃) and for test durations ranging from 1 h to 7000 h. Contrary to expected Arrhenius behaviour, the oxide growth decreased as temperature increased in this range. The Point Defect Model has been adapted to accommodate this departure. It is argued that the oxide growth behaviour is linked to the degrading coherency across the metal/oxide interface and supported by grain orientation analysis that demonstrates temperature dependence for preferred oxide growth on specific grain orientations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.