Abstract

17α hydroxylase is a key enzyme for the conversion of progesterone to prepare various progestational drug intermediates. To improve the specific hydroxylation capability of this enzyme in steroid biocatalysis, the CYP260A1 derived from cellulose-mucilaginous bacteria Sorangium cellulosum Soce56 and the Fpr and bovine adrenal-derived Adx4-108 derived from Escherichia coli str. K-12 were used to construct a new electron transfer system for the conversion of progesterone. Selective mutation of CYP260A1 resulted in a mutant S276I with significantly enhanced 17α hydroxylase activity, and the yield of 17α-OH progesterone reached 58% after optimization of the catalytic system in vitro. In addition, the effect of phosphorylation of the ferredoxin Adx4-108 on 17α hydroxyl activity was evaluated using a targeted mutation technique, and the results showed that the mutation Adx4-108T69E transferred electrons to S276I more efficiently, which further enhanced the catalytic specificity in the C17 position of progesterone, and the yield of 17α-OH progesterone was eventually increased to 74%. This study provides a new option for the production of 17α-OH progesterone by specific transformation of bacterial-derived 17α hydroxylase, and lays a theoretical foundation for the industrial production of progesterone analogs using biotransformation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.