Abstract

The moist savanna zone covers 0.5 × 106 km2 in West Africa and is characterized by very low soil N levels limiting primary production, but the ecology of nitrifiers in these (agro)ecosystems is largely unknown. We compared the effects of six agricultural practices on nitrifier activity, abundance and diversity at nine sites in central Ivory Coast. Treatments, including repeated fertilization with ammonium and urea, had no effect on nitrification and crop N status after 3 to 5 crop cycles. Nitrification was actually higher at low than medium ammonium level. The nitrifying community was always dominated by ammonia oxidizing archaea and Nitrospira. However, the abundances of ammonia oxidizing bacteria, AOB, and Nitrobacter increased with fertilization after 5 crop cycles. Several AOB populations, some affiliated to Nitrosospira strains with urease activity or adapted to fluctuating ammonium levels, emerged in fertilized plots, which was correlated to nitrifying community ability to benefit from fertilization. In these soils, dominant nitrifiers adapted to very low ammonium levels have to be replaced by high-N nitrifiers before fertilization can stimulate nitrification. Our results show that the delay required for this replacement is much longer than ever observed for other terrestrial ecosystems, i.e. > 5 crop cycles, and demonstrate for the first time that nitrifier characteristics jeopardize the efficiency of fertilization in moist savanna soils.

Highlights

  • Nitrogen, N, limits primary productivity in many terrestrial ecosystems[1] and its dynamics depends on key microbial activities such as N2 fixation, mineralisation, nitrification, denitrification and anaerobic ammonium oxidation

  • We hypothesized that (i) the nitrifying communities in the soils from the moist savanna zone result from an adaptation to very low N levels, so that fertilization can negatively influence nitrification in these soils; (ii) the stimulation of nitrification by chemical fertilization first requires profound changes in the nitrifier community, i.e. the replacement of the dominant nitrifiers adapted to very low N levels by nitrifiers adapted to higher N levels; and (iii) the time lag associated to the changes in the nitrifier community after fertilization inception or use of legumes may be so important that it would have agronomic implications

  • Our results support the view that soils from the moist savanna zone in Ivory Coast have low ammonium levels[42]

Read more

Summary

Introduction

N, limits primary productivity in many terrestrial ecosystems[1] and its dynamics depends on key microbial activities such as N2 fixation, mineralisation, nitrification, denitrification and anaerobic ammonium oxidation. Webster et al.[32] reported that a change in AOB community structure –which occurred over a few weeks–, was required before enhancement of nitrification following sheep urine application on ungrazed grassland soils from the United Kingdom This suggests that when the ammonia oxidizing communities are dominated by taxa sensitive to high ammonia concentration, a shift toward ammonia-tolerant populations is needed before nitrification can increase in response to increased N availability. These previous studies reported rather short time lags before high ammonia-tolerant nitrifiers can emerge as dominant community members (i.e. weeks to months), likely because the relatively N-poor soils studied harboured – at low abundance– nitrifiers adapted to high-N microhabitats. Our results demonstrate for the first time the adaptation of nitrifiers to very low N levels, and how this can jeopardize the efficiency of fertilization in these moist savanna soils

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call