Abstract

Muscle adaptations to exercise are underpinned by alterations to the abundance of individual proteins, which may occur through a change either to the synthesis or degradation of each protein. We used deuterium oxide (2 H2 O) labeling and chronic low-frequency stimulation (CLFS) in vivo to investigate the synthesis, abundance, and degradation of individual proteins during exercise-induced muscle adaptation. Independent groups of rats received CLFS (10Hz, 24h/d) and 2 H2 O for 0, 10, 20, or 30 days. The extensor digitorum longus (EDL) was isolated from stimulated (Stim) and contralateral non-stimulated (Ctrl) legs. Proteomic analysis encompassed 38 myofibrillar and 46 soluble proteins and the rates of change in abundance, synthesis, and degradation were reported in absolute (ng/d) units. Overall, synthesis and degradation made equal contributions to the adaptation of the proteome, including instances where a decrease in protein-specific degradation primarily accounted for the increase in abundance of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.