Abstract
The long-term persistance of P. aeruginosa in the cystic fibrosis (CF) lung is characterized by the selection of a variety of genotypes and phenotypes that typically descend from one infecting P. aeruginosa clone, a process known as adaptive radiation. This adaptation process of P. aeruginosa includes complex physiological changes that likely confer a selective advantage to better thrive in the diverse niches and microenvironments of the inflamed and hostile CF airways. The occurrence of P. aeruginosa variants is fixed by mutation and selection. Common loss-of-function mutations in genes such as lasR, mucA and mexT lead to a general adaptation pattern and P. aeruginosa variants with increased antimicrobial resistance, alginate overproduction, reduced acute virulence, and improved metabolic fitness. Strikingly, several virulence-associated traits and immunostimulatory components of P. aeruginosa are turned off. In contrast, other cellular factors are positively selected such as the outer membrane protein OprF, the blue copper protein azurin, the cytochrome c peroxidase c551, and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic components probably are required for the optimal anaerobic or microaerobic growth and viability of P. aeruginosa within CF airways. Besides these common adaptations found by the comparison of P. aeruginosa isolates from different CF patients, the overall diversity of isogenic isolates from one CF patient is extended by variable changes in the expression of regulatory-, transport-, metabolic-, and virulence-associated genes. A better understanding of the microevolution of P. aeruginosa towards niche specialists according the selection pressure in the CF lung is a prerequisite to develop new strategies for the detection of P. aeruginosa variants, the antipseudomonal treatment, the prediction of the infectious disease state, and the development of efficient vaccines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.