Abstract
Describes a technique for synthesizing speech with arbitrary speaker characteristics using speaker independent speech units, which we call average units. The technique is based on an HMM-based text-to-speech (TTS) system and maximum likelihood linear regression (MLLR) adaptation algorithm. In the HMM-based TTS system, speech synthesis units are modeled by multi-space probability distribution (MSD) HMMs which can model spectrum and pitch simultaneously in a unified framework. We derive an extension of the MLLR algorithm to apply it to MSD-HMMs. We demonstrate that a few sentences uttered by a target speaker are sufficient to adapt not only voice characteristics but also prosodic features. Synthetic speech generated from adapted models using only four sentences is very close to that from speaker dependent models trained using 450 sentences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.