Abstract

BackgroundLike normal hematopoietic stem cells, leukemia cells proliferate in bone marrow, where oxygen supply is limited. However, the growth and energy metabolism of leukemia cells under hypoxia have not been well understood. Although it has been known that reactive oxygen species (ROS) is generated under hypoxic conditions, normal and leukemia stem cells were characterized by relatively low levels of ROS. Roles of ROS on leukemia cells under hypoxia also have not been well understood.MethodsFour Leukemia cell lines were cultured under normoxia (21% O2) or hypoxia (1% O2), where NB4 and THP-1 were most extensively studied. To evaluate energy metabolism, we estimated whole cell number or apoptotic cells with or without a glycolysis inhibitor or an oxidative phosphorylation (OXPHOS) inhibitor. Glucose consumption and lactate production were also measured. To evaluate oxidative stress in hypoxic condition, the ROS level and GSH (reduced glutathione) / GSSG (oxidized glutathione) ratio was measured. In addition, pyruvate dehydrogenase kinase 1 (PDK1) and cytochrome c oxidase subunit 4 (COX4) were examined by western blotting or RT-PCR.ResultsNB4, which grows well under normoxia depending on glycolysis, demonstrated prominent apoptosis and growth suppression after 48 hours culture under hypoxia. NB4 cells cultured under hypoxia showed significantly increased ROS. Culture with a ROS scavenger resulted in decrease of apoptotic cell death of NB4 under hypoxia. NB4 cells cultured for longer period (7 days) under hypoxia did not come to extinction, but grew slowly by upregulating GSH synthesis to protect from ROS generated in hypoxic condition. By contrast, THP-1, which largely depends on OXPHOS in mitochondria under normoxia, demonstrated more growth under hypoxia by changing metabolism from OXPHOS to glycolysis through upregulating PDK1. Moreover, THP-1 avoided ROS generation by substituting COX 4 subunit (from COX 4–1 to COX 4–2) through upregulation of LON, a mitochondrial protease under hypoxia.ConclusionsWe showed that leukemia cells survive and adapt to the hypoxic condition through various pathways. Our results will help understanding energy metabolism of leukemia cells and creating novel therapeutics.

Highlights

  • Like normal hematopoietic stem cells, leukemia cells proliferate in bone marrow, where oxygen supply is limited

  • We previously described that energy metabolism of leukemia cells under normoxia and found that some leukemia cell lines depended on glycolysis and others on oxidative phosphorylation (OXPHOS) [18,19,20]

  • Proliferation of leukemia cell line cells under hypoxia versus normoxia To investigate the proliferation of leukemia cell line cells under hypoxia, the number of four leukemia cell line cells was estimated under normoxia or hypoxia after 24 and 48 hours incubation (Figure 1)

Read more

Summary

Introduction

Like normal hematopoietic stem cells, leukemia cells proliferate in bone marrow, where oxygen supply is limited. The growth and energy metabolism of leukemia cells under hypoxia have not been well understood. It has been known that reactive oxygen species (ROS) is generated under hypoxic conditions, normal and leukemia stem cells were characterized by relatively low levels of ROS. Roles of ROS on leukemia cells under hypoxia have not been well understood. Hematopoietic stem cells are localized in bone marrow, where oxygen supply is limited. Hematopoietic stem cells (HSCs) in hypoxic bone marrow have been demonstrated to generate ATPs by anaerobic glycolysis rather than mitochondrial oxidative phosphorylation [1,2]. Like normal hematopoietic stem cells, leukemia stem cells are characterized by relatively low levels of ROS (ROS-low) [11,12,13]. We examined the contribution of ROS to the growth of leukemia cells under hypoxia

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call