Abstract

Tirapazamine (TPZ, 3-amino-1,2,4-benzotriazine 1,4-di- N-oxide, SR 4233, WIN 59075) is a bioreductive antitumor agent with a high selective toxicity for hypoxic cells. The selective hypoxic toxicity of TPZ results from the rapid reoxidation of the one-electron reduction product, the TPZ radical, in the presence of molecular oxygen with the concomitant production of superoxide radical. Under hypoxia the TPZ radical kills cells by causing DNA double-strand breaks and chromosome aberrations. However, the mechanism of aerobic cytotoxicity is still a matter of debate. In this study, we investigated the mechanism of aerobic cytotoxicity by adapting human lung adenocarcinoma A549 cells to aerobic TPZ exposure and characterizing the changes associated with drug resistance. The adapted cells were resistant to aerobic TPZ exposures (with dose-modifying factors of up to 9.2), although hypoxic sensitivity was largely unchanged. Relative to the parental A549 cell line, adaptation to continuous aerobic TPZ exposure resulted in increased levels of manganese superoxide dismutase (up to 9.4-fold), moderate increases in glutathione reductase (up to 2.1-fold), and loss of both quinone oxidoreductase (DT-diaphorase) activity and NADPH cytochrome P450 reductase activity. There was essentially no change in the activity of the cytoplasmic form of superoxide dismutase (CuZnSOD), catalase, or glutathione peroxidase. The increased activity of antioxidant enzymes in the resistant cell lines (in particular MnSOD) strongly suggests that reactive oxygen species are, in large part, responsible for the toxicity of TPZ under aerobic conditions, and is consistent with aerobic and hypoxic drug cytotoxicity resulting from different mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.