Abstract

BackgroundPlasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions. These rates are typically estimated using an enzyme-linked immunosorbent assay (ELISA) utilizing antibodies against the circumsporozoite protein of Plasmodium falciparum, Plasmodium vivax VK210 (P. vivax210) or P. vivax VK247 (P. vivax247), employing assays that were developed over three decades ago. The ELISA method requires a separate assay plate for each analyte tested and can be time consuming as well as requiring sample volumes not always available. The bead-based multiplex platform allows simultaneous measurement of multiple analytes and may improve the lower limit of detection for sporozoites.MethodsRecombinant positive controls for P. falciparum, P. vivax210 and P. vivax247 and previously developed circumsporozoite (cs) ELISA antibodies were used to optimize conditions for the circumsporozoite multiplex bead assay (csMBA) and to determine the detection range of the csMBA. After optimizing assay conditions, known amounts of sporozoites were used to determine the lower limit of detection for the csELISA and csMBA and alternate cut-off measures were applied to demonstrate how cut-off criteria can impact lower limits of detection. Sporozoite rates from 1275 mosquitoes collected in Madagascar and 255 mosquitoes collected in Guinea were estimated and compared using the established csELISA and newly optimized csMBA. All mosquitoes were tested (initial test), and those that were positive were retested (retest). When sufficient sample volume remained, an aliquot of homogenate was boiled and retested (boiled retest), to denature any heat-unstable cross-reactive proteins.ResultsFollowing optimization of the csMBA, the lower limit of detection was 25 sporozoites per mosquito equivalent for P. falciparum, P. vivax210 and P. vivax247 whereas the lower limits of detection for csELISA were found to be 1400 sporozoites for P. falciparum, 425 for P. vivax210 and 1650 for P. vivax247. Combined sporozoite rates after re-testing of samples that initially tested positive for Madagascar mosquitoes by csELISA and csMBA were 1.4 and 10.3%, respectively, and for Guinea mosquitoes 2% by both assays. Boiling of samples followed by csMBA resulted in a decrease in the Madagascar sporozoite rate to 2.8–4.4% while the Guinea csMBA sporozoite rate remained at 2.0%. Using an alternative csMBA cut-off value of median fluorescence intensity (MFI) of 100 yielded a sporozoite rate after confirmational testing of 3.7% for Madagascar samples and 2.0% for Guinea samples. Whether using csMBA or csELISA, the following steps may help minimize false positives: specimens are appropriately stored and bisected anterior to the thorax-abdomen junction, aliquots of homogenate are boiled and retested following initial testing, and an appropriate cut-off value is determined.ConclusionsThe csMBA is a cost-comparable and time saving alternative to the csELISA and may help eliminate false negatives due to a lower limit of detection, thus increasing sensitivity over the csELISA. The csMBA expands the potential analyses that can be done with a small volume of sample by allowing multiplex testing where analytes in addition to P. falciparum, P. vivax210 and P. vivax247 can be added following optimization.

Highlights

  • Plasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions

  • The Circumsporozoite enzyme-linked immunosorbent assay (csELISA) is performed on the head-thorax of preserved mosquitoes, and many specimens can be evaluated at the same time on a 96-well assay plate using species-specific antibodies for Plasmodium falciparum, Plasmodium vivax VK210 (P. vivax210) or P. vivax VK247 (P. vivax247) [2,3,4]

  • A similar cut-off value of two times the average median fluorescence intensity (MFI) values of the negative control samples for circumsporozoite multiplex bead assay (csMBA) yielded a lower limit of detection of approximately 25 sporozoites for P. falciparum, P. vivax210 and P. vivax247 per mosquito equivalent, representing a lower detection limit of 56x, 17x and 66x, respectively, below those of the csELISA (Table 2)

Read more

Summary

Introduction

Plasmodium spp. sporozoite rates in mosquitoes are used to better understand malaria transmission intensity, the relative importance of vector species and the impact of interventions. These rates are typically estimated using an enzyme-linked immunosorbent assay (ELISA) utilizing antibodies against the circumsporozoite protein of Plasmodium falciparum, Plasmodium vivax VK210 Infective mosquitoes have been identified through dissection of mosquito salivary glands This is a time-consuming method requiring freshly-killed mosquitoes and does not allow for parasite species determination [1]. The csELISA is performed on the head-thorax of preserved mosquitoes, and many specimens can be evaluated at the same time on a 96-well assay plate using species-specific antibodies for Plasmodium falciparum, Plasmodium vivax VK210 It may overestimate infective mosquitoes by detecting DNA from non-infective parasite stages

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call