Abstract

Aquatic caddisflies diverged from a silk-spinning ancestor shared with terrestrial moths and butterflies. Caddisfly larva spin adhesive silk underwater to construct protective shelters with adventitiously gathered materials. A repeating (SX)(n) motif conserved in the H-fibroin of several caddisfly species is densely phosphorylated. In total, more than half of the serines in caddisfly silk may be phosphorylated. Major molecular adaptations allowing underwater spinning of an ancestral dry silk appear to have been phosphorylation of serines and the accumulation of basic residues in the silk proteins. The amphoteric nature of the silk proteins could contribute to silk fiber assembly through electrostatic association of phosphorylated blocks with arginine-rich blocks. The presence of Ca(2+) in the caddisfly larval silk proteins suggest phosphorylated serines could contribute to silk fiber periodic substructure through Ca(2+) crossbridging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.