Abstract

A combined numerical-experimental iterative procedure, based on the Gauss-Newton algorithm, has been developed for control of magnetic resonance (MR)-guided hyperthermia (HT) applications in a hybrid MR-HT system BSD 2000 3D-MRI. In this MR-HT system, composed of a 3-D HT applicator Sigma-Eye placed inside a tunnel-type MR tomograph Siemens MAGNETOM Symphony (1.5 T), the temperature rise due to the HT radiation can be measured on-line in three dimensions by use of the proton resonance frequency shift (PRFS) method. The basic idea of our iterative procedure is the improvement of the system's characterization by a step-by-step modification of the theoretical HT antenna profiles (electric fields radiated by single antennas). The adaptation of antenna profiles is efficient if the initial estimates are radiation fields calculated from a good a priori electromagnetic model. Throughout the iterative procedure, the calculated antenna fields (FDTD) are step-by-step modified by comparing the calculated and experimental data, the latter obtained using the PRFS method. The procedure has been experimentally tested on homogeneous and inhomogeneous phantoms. It is shown that only few comparison steps are necessary for obtaining a dramatic improvement of the general predictability and quality of the specific absorption rate (SAR) inside the MR-HT hybrid system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.