Abstract

Respiratory tract (RT) infections by members of the enterovirus (EV) genus of the Picornaviridae family are the most frequent cause for the common cold and a major factor in the exacerbation of chronic pulmonary diseases. The lack of a practical small-animal model for these infections has obstructed insight into pathogenic mechanisms of the common cold and their role in chronic RT illness and has hampered preclinical evaluation of antiviral strategies. Despite significant efforts, it has been difficult to devise rodent models that exhibit viral replication in the RT. This is due mainly to well-known intracellular host restrictions of EVs with RT tropism in rodent cells. We report the evolution of variants of the common-cold-causing coxsackievirus A21, an EV with tropism for the human intercellular adhesion molecule 1 (hICAM-1), through serial passage in the lungs of mice transgenic for the hICAM-1 gene. This process was accompanied by multiple changes in the viral genome, suggesting exquisite adaptation of hICAM-1-tropic enteroviruses to the specific growth conditions within the RT. In vivo mouse RT-adapted, variant coxsackievirus A21 exhibited replication competence in the lungs of hICAM-1 transgenic mice, providing a basis for unraveling EV-host interactions in the mouse RT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.