Abstract
Exponentially expanding various applications in company with proliferation of mobile devices make mobile traffic exploded annually. For future access network, bandwidth efficient and asynchronous signals converged transmission technique is required in optical network to meet a huge bandwidth demand, while integrating various services and satisfying multiple access in perceived network resource. Orthogonal frequency division multiplexing (OFDM) is highly bandwidth efficient parallel transmission technique based on orthogonal subcarriers. OFDM has been widely studied in wired-/wireless communication and became a Long term evolution (LTE) standard. Consequently, OFDM also has been actively researched in optical network. However, OFDM is vulnerable frequency and phase offset essentially because of its sinc-shaped side lobes, therefore tight synchronism is necessary to maintain orthogonality. Moreover, redundant cyclic prefix (CP) is required in dispersive channel. Additionally, side lobes act as interference among users in multiple access. Thus, it practically hinders from supporting integration of various services and multiple access based on OFDM optical transmission In this paper, adaptively modulated optical filter bank multicarrier system with offset QAM (AMO-FBMC-OQAM) is introduced and experimentally investigated in uplink optical transmission to relax multiple access interference (MAI), while improving bandwidth efficiency. Side lobes are effectively suppressed by using FBMC, therefore the system becomes robust to path difference and imbalance among optical network units (ONUs), which increase bandwidth efficiency by reducing redundancy. In comparison with OFDM, a signal performance and an efficiency of frequency utilization are improved in the same experimental condition. It enables optical network to effectively support heterogeneous services and multiple access.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.