Abstract

Electroactive polymers show promising characteristics, such as lightness, compactness, flexibility, and large displacements, making them a candidate for application in cardiac assist devices. This revives the need for quasi-square wave voltage supply switching between 0 and several kilovolts, that must be efficient, to limit the heat dissipation, and compact in order to be implanted. The high- access resistance, associated with compliant electrodes, represents an additional difficulty. Here, a solid-state Marx modulator is adapted to cope with electroactive polymer characteristics, taking advantage of an efficient energy transfer over a sequential multistep charge/discharge process. To ensure compactness, efficiency, as well as the needs of an implanted device, a wireless magnetic field-based communication and power transfer system has been implemented. This work demonstrates the benefit of this design through simulations and experimental validation on a cardiac assist device. At a voltage of 7 kV, an efficiency of up to 88% has been achieved over a complete charge/discharge cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.