Abstract

Neuro-navigated transcranial magnetic stimulation (TMS) helps to identify language-related cortical regions prior to brain tumour surgery. We adapted a semantic picture-word interference (PWI) paradigm from psycholinguistics to high-resolution TMS language mapping which prospectively can be used to specifically address the level of semantic processing. In PWI, pictures are presented along with distractor words which facilitate or inhibit the lexical access to the picture name. These modulatory effects of distractors can be annihilated in language-sensitive areas by the inhibitory effects of TMS on language processing. The rationale here is to observe the distractor effect without active stimulation and then to observe presumably its elimination by interference of the TMS stimulation. The special requirements to use PWI in this setting are (1) identifying word material for accelerating reliably naming latencies, choosing (2) the ideal presentation modality, and (3) the appropriate timing of distractor presentation. These are then controlled in real TMS language mapping. To adapt a semantic PWI naming paradigm for TMS application we employed 30 object-pictures in spoken German language. Part-whole associative semantic related or unrelated distractors were presented in two experiments including 15 healthy volunteers each, once auditorily and once visually. Data analysis across the entire stimulus set revealed a trend for facilitation in the visual condition, whereas no effects were observed for auditory distractors. In a sub-set, we found a significant facilitation effect for visual semantic distractors. Thus, with this study we provide a well-controlled item set for future studies implementing effective TMS language mapping applying visual semantic PWI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call