Abstract

Rhodococcus exhibits strong adaptability to environmental stressors and plays a crucial role in environmental bioremediation. However, seasonal changes in ambient temperature, especially rapid temperature drops exert an adverse effect on in situ bioremediation. In this paper, we studied the cell morphology and fatty acid composition of an aniline-degrading strain Rhodococcus sp. CNS16 at temperatures of 30 °C, 20 °C, and 10 °C. At suboptimal temperatures, cell morphology of CNS16 changed from short rod-shaped to long rod or irregular shaped, and the proportion of unsaturated fatty acids was upregulated. Transcriptomic technologies were then utilized to gain detailed insights into the adaptive mechanisms of CNS16 subjected to suboptimal temperatures. The results showed that the number of gene responses was significantly higher at 10 °C than that at 20 °C. The inhibition of peptidoglycan synthase expression and up-regulation of Filamentous Temperature Sensitive as well as unsaturated fatty acid synthesis genes at suboptimal temperatures might be closely related to corresponding changes in cell morphology and fatty acids composition. Strain CNS16 showed loss of catalase and superoxide dismutase activity, and utilized thioredoxin-dependent thiol peroxidase to resist oxidative stress. The up-regulation of carotenoid and Vitamin B2 synthesis at 10 °C might also be involved in the resistance to oxidative stress. Amino acid metabolism, coenzyme and vitamin metabolism, ABC transport, and energy metabolism are essential for peptidoglycan synthesis and regulation of cellular metabolism; therefore, synergistically resisting environmental stress. This study provides a mechanistic basis for the regulation of aniline degradation in Rhodococcus sp. CNS16 at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call