Abstract

In this article, we study adaptation mechanisms in a class of phosphorylation cycles where allosteric binding and gene autoregulation mechanisms regulate the phosphorylation processes. We show that both mechanisms enable a robust setpoint regulation of the regulator metabolite in the presence of constant, as well as periodic, external stimuli. The allosteric binding mechanism without the presence of gene autoregulation can serve as an integral controller. Furthermore, we show that the incorporation of a gene autoregulation mechanism enables the gene expression system to act as a genetic oscillator, which allows for the adaptation mechanism to periodic external stimuli. These results provide a theoretical explanation to the cell homeostasis under quasi-constant environmental conditions, as well as periodic, biological rhythms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.