Abstract

BackgroundThe benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing.MethodsThirty-four healthy young adults were divided into three groups randomly (COP + COG, COP, and control groups). A force plate was used to calculate the coordinates of the COP in the anteroposterior (COPAP) and mediolateral (COPML) directions. A motion analysis system was used to calculate the coordinates of the center of mass (COM) in both directions (COMAP and COMML). The coordinates of the COG in the AP direction (COGAP) were obtained from the force plate signals. Augmented visual feedback was presented on a screen in the form of fluctuation circles in the vertical direction that moved upward as the COPAP and/or COGAP moved forward and vice versa. The COP + COG group received the real-time COPAP and COGAP feedback simultaneously, whereas the COP group received the real-time COPAP feedback only. The control group received no visual feedback. In the training session, the COP + COG group was required to maintain an even distance between the COPAP and COGAP and reduce the COGAP fluctuation, whereas the COP group was required to reduce the COPAP fluctuation while standing on a foam pad. In test sessions, participants were instructed to keep their standing posture as quiet as possible on the foam pad before (pre-session) and after (post-session) the training sessions.ResultsIn the post-session, the velocity and root mean square of COMAP in the COP + COG group were lower than those in the control group. In addition, the absolute value of the sum of the COP − COM distances in the COP + COG group was lower than that in the COP group. Furthermore, positive correlations were found between the COMAP velocity and COP − COM parameters.ConclusionsThe results suggest that the novel visual feedback training that incorporates the COPAP–COGAP interaction reduces postural sway better than the training using the COPAP alone during quiet standing. That is, even COPAP fluctuation around the COGAP would be effective in reducing the COMAP velocity.

Highlights

  • The ability to maintain balance in static postures relies on the ability of the central nervous system to control movements or positional fluctuations by using the body’s center of mass (COM) so that it remains within safe boundaries above the base of support [1, 2]

  • Kilby et al reported that the real-time visual feedback of neither the center of pressure (COP) nor the COM affected the postural motion of healthy adults during quiet standing [9]; in other words, neither the COP nor the COM velocities changed when conditions were altered between a presence and lack of augmented visual feedback

  • The main finding of this study is that the COMAP velocity decreased after the training session in the COP + center of gravity (COG) and control groups, but not in the COP group

Read more

Summary

Introduction

The ability to maintain balance in static postures relies on the ability of the central nervous system to control movements or positional fluctuations by using the body’s center of mass (COM) so that it remains within safe boundaries above the base of support [1, 2]. Previous studies have reported that the augmented visual feedback of the COP has been used for static balance training [4,5,6]. The benefits gained from visual feedback of the COP during quiet standing are still under debate [7, 8]. The participants in the study of Lakhani et al showed no postural stability learning effects when visual feedback training was using either as a vertical projection of the COM onto the ground (i.e., the center of gravity (COG)) or the COP during quiet standing [10]. The benefit of visual feedback of the center of pressure (COP) on quiet standing is still debatable. This study aimed to investigate the adaptation effects of visual feedback training using both the COP and center of gravity (COG) during quiet standing

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.