Abstract

By employment of a footprint table in conducting intensity integration, splatting method has been very successful in rendering regular data volumes. Recently, the method has also been extended to render irregular data volumes. However, since samples in irregular volumes vary greatly in size and shape, the footprint table is unable to be employed in an efficient manner. This hinders the application of splatting approach from being used in the irregular volume case. In this paper, an adaptable splatting method is proposed, which provides an efficient way to integrate color intensity in terms of footprint table for the samples in various sizes. Experiments show that the new method may be used to produce better images without extra expense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call