Abstract

Monitoring and prognostics of energy assets are crucial for maintaining their reliability and efficiency. Effective monitoring ensures that potential issues are identified early, preventing unexpected failures and optimizing maintenance schedules. However, several challenges complicate this process in real-world scenarios, including poor data quality, low-fidelity and sparse data, the influence of external environmental factors, and diverse operating conditions and asset types. These challenges highlight the need for adaptable and generic solutions that can handle variability and complexity across different energy systems. This Ph.D. project aims to address these challenges by developing scalable, data-driven approaches for monitoring and prognostics. By focusing on creating adaptable and generic frameworks, the research seeks to provide robust solutions for real-world monitoring and prognostic problems for energy assets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.