Abstract

Japonica rice has been considerably impacted from climate change, mainly regarding temperature variations. Adjusting the crop management practices based on the assessment of adaptability mechanisms to take full advantage of climate resources during the growing season is an important technique for japonica rice adaptation to climate changed conditions. Research based on the adaptability mechanisms of japonica rice to temperature and other environmental variables has theoretical and practical significance to constitute a theoretical foundation for sustainable japonica rice production system. A contrived study was arranged with method of replacing time with space having four different japonica cultivars namely Longdao-18, Longdao-21, Longjing-21, and Suijing-18, and carried out in Harbin and Qiqihar during the years 2017–2019 to confer with the adaptability mechanisms in terms of growth, yield and quality. The formation of the grain-filling material for superior and inferior grains was mainly in the middle phase which shared nearly 60% of whole grain-filling process. Maximum yield was noticed in Longdao-18 at Harbin and Qiqihar which was 9500 and 13,250 kg/ha, respectively. The yield contributing components fertile tillers, number of grains per panicle, and 1000-grain weight were higher at Qiqihar; therefore, there was more potential to get higher yield. The data for grain-filling components demonstrated that the filling intensity and duration at Qiqihar was contributive to increase the grain yield, whereas the limiting agents to limit yield at Harbin were the dry weights of inferior grains. The varietal differences in duration and time of day of anthesis were small. Across all cultivars and both study sites, nearly 85% of the variation of the maximum time of anthesis could be justified with mean atmospheric temperature especially mean minimum temperature. Mean onset of anthesis was earliest in Longdao-21 at Harbin, whereas it was latest in Longdao-18 at Qiqihar. The maximum time to end anthesis and the longest duration of anthesis were taken by Longdao-18, i.e., 9.0 hasr and 4.2 h, respectively. Chalkiness and brown rice percentages were elevated at Qiqihar showing Harbin produced good quality rice. This study investigated the adaptability mechanisms of japonica rice under varying temperature conditions to distinguish the stress tolerance features for future sustainability and profitability in NEC. It was concluded that there is an adaptive value for anthesis especially regarding Tmin and, moreover, earlier transplantation may produce tall plants. The results demonstrated that high temperature at the onset of anthesis at the start of the day enhanced the escape from high temperature later during the day. Early transplantation is recommended in NEC because earlier anthesis during humid days rendered for potential escape from high ambient temperature later during that day. Temperature influenced japonica rice significantly and coherently, whereas the influence of growing season precipitation was not significant. Daily mean sunshine influenced the japonica rice significantly, but the impact was less spatially coherent. The results foregrounded the response of the japonica rice to external driving factors focusing climate, but ignored socioeconomic suggesting emphasis on both driving factors to target future research and render important insights into how japonica rice can adapt in mid-high-latitude regions.

Highlights

  • Global mean surface temperatures are expected to be higher from the present by 1–3 ◦C at the end of year 2100 [1]

  • Productive tillers were counted per hill for all cultivars and the highest numbers were seen in Suijing-18 at Harbin with mean values of 17 and 15, respectively, in 2018 and 2019, whereas a similar trend was seen at Qiqihar with mean values of 13 and 12, respectively in 2018 and 2019 (Table 1)

  • The mean values for net grain yield were highest for all cultivars in 2018 than in 2017 and 2019 at Harbin where the maximum grain yield was observed in Longdao-18 in 2018, which was 9500 kg/ha

Read more

Summary

Introduction

Global mean surface temperatures are expected to be higher from the present by 1–3 ◦C at the end of year 2100 [1]. Northeast China (NEC), one of the major rice producing regions in China, experienced the most obvious warming since last century [3], but the most evident warming has been observed since the 1980s with an annual mean temperature rise of 1.0–2.5 ◦C. In NEC, reduction in precipitation was seen during summer as the mean rainfall has been decreasing since 1965 [3], whereas increase in temperature has been observed in winter [4]. In NEC, the temperature was higher during 1920–1930, after three decades, it started to decrease, and thereafter again during the 1970s–1980s, it started to become higher [5]. For NEC, the average rise in daily minimum temperature was more obvious than the daily maximum temperature which noticeably narrowed the diurnal temperature range [6]. There is vulnerability to semi-arid areas in NEC because of periodic drought stress as most of the lakes are even disappearing because of declining precipitation and ground water levels

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call