Abstract

Genetic network programming (GNP) has been proposed as one of the evolutionary algorithms and extended with reinforcement learning (GNP-RL). The combination of evolution and learning can efficiently evolve programs and the fitness improvement has been confirmed in the simulations of tileworld problems, elevator group supervisory control systems, stock trading models and wall following behavior of Khepera robot. However, its adaptability in testing environments, where the situations dynamically change, has not been analyzed in detail yet. In this paper, the adaptation mechanism in the testing environment is introduced and it is confirmed that GNP-RL can adapt to the environmental changes using a robot simulator WEBOTS, especially when unexperienced sensor troubles suddenly occur. The simulation results show that GNP-RL works well in the testing even if wrong sensor information is given because GNP-RL has a function to automatically change programs using alternative actions. In addition, the analysis on the effects of the parameters of GNP-RL is carried out in both training and testing simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.