Abstract

The industrial cyber-physical systems (ICPS) will accelerate the transformation of offline data-driven modeling to fast computation services, such as computation pipelines for prediction, monitoring, prognosis, diagnosis, and control in factories. However, it is computationally intensive to adapt computation pipelines to heterogeneous contexts in ICPS in manufacturing. In this article, we propose to rank and select the best computation pipelines to match contexts and formulate the problem as a recommendation problem. The proposed method adaptive computation pipelines (AdaPipe) considers similarities of computation pipelines from word embedding, and features of contexts. Thus, without exploring all computation pipelines extensively in a trial-and-error manner, AdaPipe efficiently identifies top-ranked computation pipelines. We validated the proposed method with 60 bootstrapped datasets from three real manufacturing processes: thermal spray coating, printed electronics, and additive manufacturing. The results indicate that the proposed recommendation method outperforms the traditional matrix completion, tensor regression methods, and a state-of-the-art personalized recommendation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.