Abstract

The ADAMTS superfamily comprises secreted metalloproteases (ADAMTS proteases) as well as structurally related secreted glycoproteins that lack catalytic activity (ADAMTS-like proteins). Members of both families participate in diverse morphogenetic processes during embryonic development, and connective tissue maintenance and hemostasis in the adult. Several ADAMTS proteins are heavily implicated in genetic and acquired human and animal disorders. Despite these indicators of a profound biological and medical importance, detailed knowledge about their molecular structures, substrates, biological pathways, and biochemical mechanisms is significantly limited by unique intrinsic characteristics, which have led to several technical challenges. As a group, they are larger, more heavily modified, and harder to purify than other secreted proteases. In addition, idiosyncratic aspects of individual members are deserving of further investigation but can complicate their analysis. Here, some of the key concepts, challenges, and prospects in ADAMTS research are discussed in the context of the knowledge accumulated over the past two decades. Individual chapters in this volume of Methods in Molecular Biology provide practical solutions for surmounting these challenges. Since the biology of a protease is actually the biology of its substrates, there is considerable emphasis on purification of recombinant ADAMTS proteins, identification of their substrates and assays for their proteolytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.